
Integrate your own workflow
with job automation APIs
OAsis offers job automation APIs that allow you to enqueue and inspect jobs easily. This means you
can seamlessly integrate HPC into your workflow engine as a component. For example, you can use
it to finetune machine learning models with new data or set up simulation jobs using your own
tooling.

This article will use the Molecular Dynamics Simulation case as an example, but the concept should
generally apply to all types of workloads.

For the simulation of the ApoA1 protein in a water box and the study of energy changes, we will be
using NAMD. NAMD is available in various distributions, with OAsis offering it as both the Lmod
system and the container version packaged by NVIDIA NGC. We will use the container version in
this article.

Run the simulation using quick job
We can run container-based jobs easily in the web portal. Access Jobs > Run container and fill in
the following:

https://doc.oasishpc.hk/books/oasis-user-guide/page/accelerating-molecular-dynamics-simulations-with-mpi-and-gpu


Enqueue the job, and you should see the job output (log file) on the following screen:

Please wait until the job is completed. Once that's done, repeat step 1, but click on the "Export job
script" button this time. This will allow you to download a quickjob.sbatch file. This file is a
standard SLURM job script that can be enqueued using the sbatch command.

Upload it back to the cluster via the file browser to finish the setup.

https://doc.oasishpc.hk/uploads/images/gallery/2023-07/enqueue-namd.png
https://doc.oasishpc.hk/uploads/images/gallery/2023-07/enqueue-namd-output.png


Run the job programmatically using the hc CLI client

We are going to use two APIs: enqueue-job and job-status. You may inspect their usage using
the --help argument.

Let's use the two sub-commands to enqueue a new job and then inspect it's status.

Ensure you are using the latest hc client before proceeding. This article is tested with hc
version 0.0.196.

https://doc.oasishpc.hk/uploads/images/gallery/2023-07/upload-sbatch.png
https://doc.oasishpc.hk/uploads/images/gallery/2023-07/hc-cli-for-jobs.png


Run the job programmatically using Python
Below is a Python sample code demonstrating how to call the OAsis RESTful API, specifically the
"me", "enqueue-job", and "job-status" API functions.

$ hc enqueue-job --path=/pfss/home/loki/quickjob.sbatch
Submitted batch job 164337

$ hc job-status -j 164337
JobState:completed

import requests
import time
import hashlib
import hmac
import json

# hide InsecureRequestWarning message, you may delete these two lines
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

api_key = "<API-KEY>" # replace your api key
api_key_secret = "<API-KEY-SECRET>" # replace your api key secret
baseUrl = "https://hpccenter.hk"

def getSignature(api_key_secret, path, ts):
    mac = hmac.new(api_key_secret.encode(), digestmod=hashlib.sha256)
    mac.update(f"{path}|{ts}".encode())
    return mac.hexdigest()

def getHeaders(api_key, api_key_secret, path):
    ts = int(time.time())
    headers = {
        "req-at": str(ts),
        "req-api-key": api_key,
        "req-signature": getSignature(api_key_secret, path, ts),
    }
    return headers

def getResult(baseUrl, path, method = "get", payload={}):



Make sure to replace "<API-KEY>","<API-KEY-SECRET>"  with your actual API key obtained from the
OAsis platform. Also replace "<JOB-ID>","<JOB-FILE-PATH>"  with the actual data.

This code covers the basic functionality of retrieving user information, enqueueing a job with
specified parameters, and checking the status of a job using the RESTful API endpoints provided by
OAsis.

    url = baseUrl + path
    if method == "get":
        response = requests.get(url, headers=getHeaders(api_key, api_key_secret, path), verify=False)
    else:
        response = requests.post(url, json=payload, headers=getHeaders(api_key, api_key_secret, path), 
verify=False)

    if response.status_code == requests.codes.ok:
        return response.json()
    else:
        print("Error:", response.status_code, response.text)
        raise Exception("api call error")

# get login user information
path = "/api/me"
result = getResult(baseUrl, path)
print(result)

# get job status
jobId = "<JOB-ID>" # replace your job id
path = "/api/job-status?job-id=" + str(jobId)
result = getResult(baseUrl, path)
print(result)

# enqueue job
jobFilePath = "<JOB-FILE-PATH>" # replace your job file location, e.g. 
/pfss/home/<USERNAME>/<FILENAME>.sbatch
payload = {
    "path": jobFilePath
}
path = "/api/enqueue-job"
result = getResult(baseUrl, path, "post", payload)
print(result)



Revision #23
Created 3 July 2023 07:38:20 by Loki Ng
Updated 4 July 2023 09:01:30 by Milo Cheung


