
Accelerate a simple C++
program with MPI and CUDA
This article will discuss parallel computing and how it can be applied using MPI and CUDA
paradigms. We will use these paradigms to accelerate the multiplication of two large matrices in a
simple C++ program.

Parallel computing refers to executing multiple tasks or processes simultaneously, dividing them
among multiple computing resources such as processors or cores. This approach allows for the
efficient utilization of resources and can significantly speed up the execution of certain types of
problems.

Parallel computing is particularly well-suited for solving problems that can be divided into smaller,
independent tasks that can be executed simultaneously. These problems often involve large
datasets, complex calculations, or repetitive operations. By dividing the workload among multiple
computing resources, parallel computing can significantly reduce the execution time.

Problems suitable for parallel computing include matrix multiplication, image and video processing,
scientific simulations, data analysis, and machine learning algorithms. These problems typically
involve extensive calculations that can be broken down into smaller tasks and executed in parallel.

Many models or paradigms offer different approaches to parallel computing, catering to various
hardware architectures and programming requirements. Each has its strengths and is selected
based on the specific needs of the application at hand. Here's a brief introduction to several
paradigms commonly used in parallel computing:

1. OpenMP: OpenMP (Open Multi-Processing) is a popular shared-memory parallel
programming model. It allows developers to parallelize their code by inserting directives
that specify which parts of the code can be executed in parallel. OpenMP is known for its
simplicity and ease of use, making it a widely adopted choice for parallel programming
on multi-core processors.

2. SIMD: SIMD (Single Instruction, Multiple Data) is a parallel computing paradigm that
focuses on executing the same operation on multiple data elements simultaneously. It is
commonly used in vector processing architectures, where a single instruction operates
on multiple data elements in a single clock cycle. SIMD provides significant performance
improvements for tasks that involve data-level parallelisms, such as image processing
and multimedia applications.

3. MPI: MPI (Message Passing Interface) is a standard communication protocol used for
parallel computing across distributed memory systems. It enables multiple processes on
different machines to exchange data and coordinate their execution. MPI is widely used

in scientific and high-performance computing applications, where data is distributed
across multiple nodes and requires efficient communication and synchronization.

4. OpenCL: OpenCL (Open Computing Language) is an open standard for parallel
programming across heterogeneous platforms, including CPUs, GPUs, and FPGAs. It
allows developers to write code that can be executed on different hardware
architectures, enabling high-performance computing across various devices. OpenCL
provides a flexible and portable approach to parallel computing and is particularly useful
for tasks that can benefit from the acceleration of specialized hardware.

5. CUDA: CUDA (Compute Unified Device Architecture) is a parallel computing platform and
programming model developed by NVIDIA. It allows developers to harness the power of
NVIDIA GPUs for general-purpose computing. CUDA provides a programming interface
and tools that enable developers to write code that can execute in parallel on GPUs,
achieving significant performance improvements for various applications, including
scientific simulations, data analytics, and deep learning.

Matrix multiplication
The schoolbook algorithm, also known as the naive algorithm or the standard multiplication
algorithm, is a method used to multiply matrices. To multiply two matrices, A and B, we iterate
through each row of A and each column of B. For each element in the resulting matrix C, we
multiply the corresponding row of A with the corresponding column of B, summing up the products
to obtain the final value.

The schoolbook algorithm can be efficiently parallelized. Since each element of the resulting matrix
C is calculated independently, it lends itself well to parallel execution. We can assign different
subsets of rows or columns to different processors or threads, allowing them to work on their

https://www.linkedin.com/pulse/matrix-multiplication-explained-tivadar-danka/
https://doc.oasishpc.hk/uploads/images/gallery/2023-07/1639570439219.png

respective parts simultaneously. Once all the calculations are complete, the partial results can be
combined to obtain the final matrix C.

The single code way

All the following source codes and the compiled binaries are stored in /pfss/toolkit/parallel-
computing-cpp-example.

#include <iostream>
#include <chrono>
#include <random>

using namespace std;

const int N = 1500; // matrix size

int main() {

 // allocate matrices dynamically
 float **A, **B, **C;
 A = new float*[N];
 B = new float*[N];
 C = new float*[N];
 for(int i = 0; i < N; i++) {
 A[i] = new float[N];
 B[i] = new float[N];
 C[i] = new float[N];
 }

 // create and initialize matrices
 default_random_engine generator;
 uniform_real_distribution<float> distribution(0.0,1.0);
 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 A[i][j] = distribution(generator);
 B[i][j] = distribution(generator);
 C[i][j] = 0.0;
 }
 }

The MPI way

 auto start = chrono::high_resolution_clock::now();

 // matrix multiplication
 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 for(int k = 0; k < N; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }

 auto end = chrono::high_resolution_clock::now();
 auto duration = chrono::duration_cast<chrono::milliseconds>(end - start);
 cout << "Time taken: " << duration.count() << " ms" << endl;

 // free memory
 for(int i = 0; i < N; i++) {
 delete[] A[i];
 delete[] B[i];
 delete[] C[i];
 }
 delete[] A;
 delete[] B;
 delete[] C;

 return 0;
}

load the gcc compiler from lmod
module load GCC/11.3.0

compile the code
g++ mm-1core.cpp -o mm-1core

run on a compute node with one CPU core
the program will not run any faster even if we give it more cores
because the program don't know how to utilize them
srun -p gpu -c1 ./mm-1core

#include <iostream>
#include <chrono>
#include <random>
#include <mpi.h>

using namespace std;

const int N = 1500; // matrix size

int main(int argc, char** argv) {
 auto start = chrono::high_resolution_clock::now();
 int rank, size;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 // create and initialize matrices
 float *A = new float[N*N];
 float *B = new float[N*N];
 float *C = new float[N*N];
 default_random_engine generator;
 uniform_real_distribution<float> distribution(0.0,1.0);
 for(int i = 0; i < N*N; i++) {
 A[i] = distribution(generator);
 B[i] = distribution(generator);
 C[i] = 0.0;
 }

 // distribute matrices A and B
 int chunk_size = N / size;
 float *local_C = new float[chunk_size*N];
 for(int i = 0; i < chunk_size*N; i++) {
 local_C[i] = 0.0;
 }

 MPI_Bcast(A, N*N, MPI_FLOAT, 0, MPI_COMM_WORLD);
 MPI_Bcast(B, N*N, MPI_FLOAT, 0, MPI_COMM_WORLD);

 // matrix multiplication

 const int i_offset = rank * chunk_size;

 for(int i = 0; i < chunk_size; i++) {
 for(int j = 0; j < N; j++) {
 for(int k = 0; k < N; k++) {
 local_C[i*N+j] += A[(i + i_offset)*N+k] * B[(k + i_offset)*N+j];
 }
 }
 }

 // gather results from all processes
 MPI_Gather(local_C, chunk_size*N, MPI_FLOAT, C,
 chunk_size*N, MPI_FLOAT, 0, MPI_COMM_WORLD);

 // clean up
 delete[] A;
 delete[] B;
 delete[] C;
 delete[] local_C;

 MPI_Finalize();

 // print timing information
 auto end = chrono::high_resolution_clock::now();
 auto duration = chrono::duration_cast<chrono::milliseconds>(end - start);
 if(rank == 0) {
 cout << "Time taken: " << duration.count() << " ms" << endl;
 }

 return 0;
}

this time we need OpenMPI as well to compile our code
module load GCC/11.3.0 OpenMPI/4.1.4

compile with the mpic++ compiler
mpic++ mm-mpi.cpp -o mm-mpi

run the compiled program with 8 CPU cores
srun -n8 -N1 -p gpu ./mm-mpi

The CUDA way
#include <iostream>
#include <chrono>
#include <random>

using namespace std;

const int N = 1500; // matrix size
// divide the matrix into 94x94=8836 sub-matrix (blocks)
// each blocks has 16x16=256 threads taking care of each number in the result matrix
const int BLOCK_SIZE = 16;

// CUDA kernel for matrix multiplication
__global__ void matrixMul(float *A, float *B, float *C, int n) {
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0;
 for(int k = 0; k < n; k++) {
 sum += A[row * n + k] * B[k * n + col];
 }
 C[row * n + col] = sum;
}

int main() {
 auto start = chrono::high_resolution_clock::now();

 // create and initialize matrices on GPU
 float *A, *B, *C;
 cudaMallocManaged(&A, N*N*sizeof(float));
 cudaMallocManaged(&B, N*N*sizeof(float));
 cudaMallocManaged(&C, N*N*sizeof(float));

 cout << "generate the matrices..." << endl;
 default_random_engine generator;
 uniform_real_distribution<float> distribution(0.0, 1.0);
 for(int i = 0; i < N*N; i++) {
 A[i] = distribution(generator);
 B[i] = distribution(generator);

Result

Single core MPI (8
cores)

MPI (16
cores)

CUDA (GPU)

1500 x 1500
matrix

14s 4s 3s ~400ms

 C[i] = 0.0;
 }

 // matrix multiplication on GPU
 cout << "multiply..." << endl;
 dim3 block(BLOCK_SIZE, BLOCK_SIZE);
 dim3 grid((N + BLOCK_SIZE - 1) / BLOCK_SIZE, (N + BLOCK_SIZE - 1) / BLOCK_SIZE);
 matrixMul<<<grid, block>>>(A, B, C, N);

 // clean up
 cout << "Cleaning up..." << endl;
 cudaFree(A);
 cudaFree(B);
 cudaFree(C);

 // print timing information
 auto end = chrono::high_resolution_clock::now();
 auto duration = chrono::duration_cast<chrono::milliseconds>(end - start);
 cout << "Time taken: " << duration.count() << " ms" << endl;

 return 0;
}

load the CUDA libraries and binaries
module load GCC CUDA

compile our code with the nvcc compiler
nvcc -o mm-cuda mm-cuda.cu

run the compiled program with 1x A100 GPU
srun -p gpu --gpus a100:1 ./mm-cuda

5000 x 5000
matrix

- 73s 39s 2s

10k x 10k
matrix

- - - 9s

Revision #8
Created 3 July 2023 06:16:38 by Loki Ng
Updated 23 December 2023 14:21:50 by Loki Ng

